
International Journal of Computer Trends and Technology Volume 72 Issue 11, 1-7, November 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I11P101 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Examine the Role of WAAP, WAF, TLS and mTLS in

Protecting APIs from Advance Cyber Attacks

Piyush Dixit

Director - Integrations & API Software Engineering, Cummins Inc., Indiana, USA.

Corresponding Author : piyushdixitwork@gmail.com

Received: 15 September 2024 Revised: 17 October 2024 Accepted: 03 November 2024 Published: 20 November 2024

Abstract - Cyber-attacks on Application Programming Interfaces (APIs) have become extremely advanced and sophisticated,

posing novel challenges in securing APIs. This has generated a dire need to use equally sophisticated cyber security tools for

protection. APIs have become unarguably indispensable in connecting disparate software application systems both within and

outside an enterprise. APIs help to move data effectively and even help organizations generate revenue by selling data and

services. These factors have significantly surged the number of APIs that are being built, consequently increasing the cyber-

attack exposure for the companies, exposing them over the web for bad actors to exploit. Attackers often exploit numerous

vulnerabilities in APIs left behind due to poor cyber security practices during implementation or hosting. The vulnerabilities

enable bad actors to gain unauthorized access to sensitive data and systems within an organization. What has worked as fuel to

the fire is the easy availability of malicious no-code type software and tools that can launch automated attacks, bypass standard

security measures in place, stay completely undetected, and sometimes even be untraced from intrusion detection systems. There

is a gap in current research on these topics which only highlights the necessity to implement some basic cyber defense

mechanisms but does not specifically highlight the role and usage of some advance tools like WAAP, WAF, TLS & mTLS, which

help bolster API security. This study aims to examine and present these advanced protection tools available to defend against

complicated modern cyber-attacks and establish an approach to how organizations can implement these security measures to

protect APIs.

Keywords - API Security, WAF, WAAP, TLS, mTLS, OSI, Layer 7, Layer 4, TCP/IP, HTTPS.

1. Introduction
Advanced API security involves implementing

sophisticated security tools and adhering to mature security

processes based on principles like zero trust, need-based

access and, most importantly, Defence in Depth (DiD), which

basically uses multi-layered controls to protect assets. There

are numerous tools available to implement these security

principals. Some of those tools and protocols are WAAP/

WAF, TLS, and mTLS, which, although sophisticated, are

also extremely standard to implement. Just with some basic

understanding, they can be utilized to implement a robust

security regime. There is a significant research gap in this field

when it comes to clearly highlighting the utility of these

sophisticated security tools and technology, and that is the

purpose of this article: to examine and understand these tools

and protocols. The novelty of this study is to clearly detail the

relevant nuances of these tools and layout a crisp case for their

utilization. An API operates over OSI layer 7 using the HTTP

protocol of the application layer, which is built on TCP/IP,

which is layer 4 protocol, also known as the transport layer.

The majority of organizations are very efficient when it comes

to protecting layer 4 TCP/IP traffic. It is typically done using

network layer firewalls and other network security devices

that act as security watchdogs. At layer 4, the security

measures typically revolve around scanning IP addresses,

checking for ports, evaluating packet header trailers, and

inspecting overall TCP/IP packet signatures to detect

anomalies and ultimately block threats that fail to pass the

scrutiny. But the information or data at layer 4 is typically

encoded in TCP/IP protocol packet structure, making these

firewalls partially or sometimes completely blind in detecting

threats that exist in an encapsulated form and those threats are

smartly packaged to reveal and specifically target the time of

layer 7 decapsulations when the message is revealed in its final

form for consumption in the application layer by

communicating systems. Regarding encryption, another

important pillar of security of API traffic, TLS-based

encryption, is the gold standard for ensuring that all data in

motion is encrypted. All modern API gateways and web

servers hosting APIs come equipped with out-of-the-box

support for the latest TLS version-based encryption,

implemented using public and private keys or certificates

often issued by independent and industry-recognized trusted

third-party certificate authorities. Mutual TLS (mTLS) takes

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:piyushdixitwork@gmail.com

Piyush Dixit / IJCTT, 72(10), 1-7, 2024

2

this another notch by ensuring the server and client are

authenticated using respective security certificates. mTLS

works on the principal of zero trust and forces double

validation to avoid impersonation. This article aims to

examine and layout a study of these advanced mechanisms

available to effectively secure APIs.

2. Examining WAF and WAAP
2.1. Layer 7, the most attacked layer

Layer 7, also known as the application layer in the OSI

model, is vulnerable to the most sophisticated attacks because

it is the most feature-rich layer. This layer offers several

complex capabilities through its high-end protocols, like

HTTP, SFTP or SMTP, that ultimately enable the effective

exchange of information between systems, usually referred to

as client and server information exchange. Figure 1 shows the

OSI model with protocols supported in layer 7 and layer 4.

Attackers these days get very crafty when it comes to

exploiting these protocols and, hence, can either steal the data

or gain unauthorized access. The most common and effective

attacks available to be executed at this layer are the BoT

attack, API JSON/XML injection attack, and API Parameter

Tempering attack. With basic knowledge of the http request-

response structure and access to nominal computing power,

any of these attacks can be executed against unprotected APIs.

This is why this layer is special and most lucrative to bad

actors. WAF and WAAP solutions protect secure traffic,

specifically in layer seven, the application layer.

2.2. Web Application Firewall – WAF

A web application firewall is a special layer 7 protection

firewall software that protects web traffic by detecting and

blocking threats that impact the layer's higher-level protocols.

 WAF can be installed as a network software either on-premise

or on a private cloud, or SaaS providers can avail of it as a

cloud offering. It can protect against common threats like

zero-day exploits, malware infections, and impersonation.

WAF can inspect each packet, and it uses a rich static rule

repository and security policies to analyze Layer 7 web

application traffic and filter out harmful traffic that can cause

exploits. Figure 2 shows how a WAF solution that is based on

pre-configured rules and restriction-based policies is

implemented on top of the application or web servers

rendering API and how a WAF can differentiate between valid

requests versus malicious requests and can reject invalid

traffic prohibiting that from reaching the protected asset,

which in this case is a web server. Further through granular

packet inspection, WAF can detect and prevent security

threats, which traditional network firewalls and other intrusion

detection systems and intrusion prevention systems might not

be able to do. These days, it is very common to place a cloud-

based WAF solution in front of the website, and that is exactly

where it shines. However, the same cannot be said about

protecting APIs using WAF. Although both APIs and

Websites run on the HTTP protocol over the web, the request-

response messages exchanged in both are totally different.

Websites deal in HTML, JS, and CSS, while APIs deal in

payloads, typically in JSON, XML, or sometimes flat files. A

website's purpose and implementation structure

fundamentally differ from an API. WAF has served the web

world for a very long duration of time, and still, it is standing

the test of time when it comes to protecting websites.

However, in order to protect APIs, a more appropriate solution

is needed. It has gained popularity in the security space

recently; it is referred to as WAAP – Web Application and

API Protection.

Fig. 1 OSI Model 7 layers with protocols in layers 7 and 4

HTTP, FTP, SMTP
High Level protocols to support complex functionalities

TCP & UDP
Protocols focused on IP/Port based packet transportation

Application

Presentation

Session

Transport

Network

Data Link

Physical

Piyush Dixit / IJCTT, 72(10), 1-7, 2024

3

Fig. 2 WAF only allows valid requests to the web server

2.3. Web Application and API Protection – WAAP

WAAP Web application and API protection is not just a

web application firewall like WAF. WAAP is a more powerful

product that encompasses capability to protect web

applications and provides exclusive tools referred to as holistic

API protection solutions powered by artificial intelligence and

automation, enabling it to provide end-to-end protection

against a wide range of multi-vector attacks on APIs. WAAP

can offer advanced features like automatic API discovery,

adaptive detections, built-in bot mitigation, and continuous

self-tuning as the threat landscape changes. Modern enterprise

applications these days are either from SaaS products from

some provider or are home-grown web and software

applications that heavily rely on microservices and APIs for

numerous business transactions, either within or to and from

outside the organization with partners. These multiple digital

applications, using APIs, eventually significantly expand the

attack surface with a new and wide range of entry points now

available for hackers to exploit to gain access or steal data.

The most common form, although not the only form, of

implementing WAAP solutions that are available today is in

the form of some cloud-based SaaS WAAP solution that can

be put in front of the web traffic of an organization, especially

API traffic as soon as it lands on the DNS server for IP

resolution of the company domain. The domain names can be

resolved to the IP addresses of the WAAP solution, where the

entire traffic can be routed for deeper inspection and scrutiny

via policies and security rules. It is post-competing all the

evaluations in the WAAP, and the traffic can be routed to the

regular network or application load balancers of the

organization's application web server.

As explained in Figure 3, a typical WAAP

implementation solution flow starts from the client sending

the request to a DNS server to resolve the IP address for a

domain where the API is hosted to receive a desired response,

which is typically some data or an action requested. The DNS

resolved the domain into the IP addresses hosted by the

WAAP SaaS solution. This WAAP solution deeply inspects

the request packet, scrutinizing it using traditional static rules

and policies, and compares it against newly learnt threat

signatures with the power of AI and ML.

Fig. 3 Most common WAAP implementation solution flow

Client DNS Server IP

Reseolver
WAAP Saas

Solution

App or Net Load

Balancer

Web & API

Server

Web & API

Server

WAAP inspects request packets

using rules and policies configured

and per Al based learning of new

threat signatures prevalent with

changing times.

Piyush Dixit / IJCTT, 72(10), 1-7, 2024

4

Only after WAAP determines the request packets to be

safe does it finally route them to the load balancers that

manage the load for the application or web server hosting or

serving the API. Typically, WAAP solutions offer company

admin personnel rich UI-based management portals that can

be used to write new security policies, implement custom

validation rules and, most importantly, audit the historical logs

to have a detailed snapshot of the historical behavior of the

type of traffic that has tried to reach companies web assets.

This empowers organizations to manage and have clear

visibility of existing threat assessments. The most lethal

strength of a modern and effective WAAP solution is its

underlying AI/ML models that constantly learn the change in

the pattern of attacks by getting trained on daily traffic

activities and actions either supervised due to actions taken by

admin personnel or unsupervised by observing the signature

of the traffic packets. This is why organizations dealing with

high internet-based interactions over the web with clients or

customers should invest in a robust and dynamically learning

WAAP solution to protect APIs.

3. Examining TLS - Transport Layer Security
3.1. TLS is an encryption protocol

TLS is a data encryption protocol that uses high-end

cryptography to encrypt data exchange between digital

devices on the internet. Encryption of data being transferred

ensures that any information exchanged between the client and

server remains confidential and cannot be intercepted by

unauthorized entities. Even if intercepted, it remains

uninterpretable, protecting the data's confidentiality. TLS

ensures that the entities exchanging information systemically

over the web are the ones that they claim to be per the domain

name. TLS enforces the use of digital certificates issued by

trusted certificate authorities to achieve this goal of validating

the web asset. The server shares a public certificate with the

client trying to establish a connection; the client, on the other

side, validates the authenticity of the certificate before

proceeding with the communication with the server; this

ensures that the client is establishing a connection with the

right server and not a malicious imposter asset pretending to

be the genuine server.

 Figure 4 shows a TLS handshake as a very high-level

flow diagram. The TLS handshake is a process that establishes

a secure connection between the client and server. During this

handshake process, before any business data is exchanged, the

client and server agree on the TLS version cipher suite that

would be used, and some other cryptographic parameters

necessary for establishing a trusted and secure connection are

exchanged. As shown in Figure 4, the process starts with Step

1, when a client initiates a connection request to a server by

sending a hello message. In step 2, the server responds by

sharing server public certificate issues by a trusted certificate

authority. In Step 3, the client first validates and verifies the

certificate shared by the server to ensure that the server is

authentic.

Fig. 4 TLS Handshake between Client and Server

After confirmation, the client returns to the server with

the preferred cypher specification for communication. In Step

4, the server responds with a confirmation of the change in the

cipher. Finally, in Step 5, a trusted connection is established

between client and server to exchange fully encrypted data due

to the TLS handshake preceding data exchange. There are few

compliance standards globally and sometimes within the

boundary of a region or a country that mandate enforcement

of TLS-based encryption to protect sensitive information. So,

TLS not only provides information security for an

organization dealing with sensitive data, but the

implementation of TLS also ensures that the organization is

not violating most of the prominent compliance standards like

PCI-DSS, HIPPA, GDPR, etc.

However, a few things require very careful attention

while setting up and managing TLS configurations. This

includes, although not only limited to, a few key

considerations like selecting strong cipher suites, regularly

checking expired certificates and updating certificates, and

disabling deprecated protocols and older TLS versions by

upgrading to newer ones. Without these careful

considerations, there is always a risk of inheriting

vulnerabilities arising from weak TLS implementations.

3.2. Choosing strong Cipher Suites

Cipher suites are cryptographic algorithms used to

encrypt the data. They often are an amalgamation of multiple

algorithms offering logic to govern key exchange, message

authentication, hashing mechanism and overall encryption.

However, the same ciphers cannot always stay relevant. As

threats evolve with time, the ciphers need upgrades, which is

why any TLS implementation needs to ensure the cipher suites

being utilized are of the latest and greatest version available

and compatible. Weak an outdated algorithms can be

exploited with the increases compute power available today at

the disposal of any bad actor. Advanced Encryption Standard

Piyush Dixit / IJCTT, 72(10), 1-7, 2024

5

(AES) and Secure Hash Algorithm 256-bit (SHA-256) are

very common and strong algorithms prevalent today.

3.3. Regularly updating TLS security certificates

A TLS certificate is a digital artifact that sometimes

allows systems like servers or even clients to prove and verify

identity. The certificate also enables the establishment of an

encrypted network connection between the two systems using

protocols like TLS. These are preferably issued by a

recognized certificate authority that acts as a trusted third

party between client and the server by providing public

certificates that act as a trusted digital identity card for web

assets. Figure 5 shows some contents of a TLS Certificate. The

figure above only shows the public key that is contained inside

the certificate, but another part of the key called the private

key, is not included in the certificate. Both public and private

keys are generated as a pair of asymmetric keys.

Where the public key is used to encrypt the data, and this

key is publicly accessible, while the private key is used to

decrypt the data and is only accessible to the owner of the

private key; this is commonly referred to as asymmetric key-

based encryption that is implemented utilizing these

certificates. Certificates also offer an important feature that

enables parties to digitally sign the message, which enables

the receiving party to confirm that the rightful owner was

sending the message.

An important feature of TLS certificates is the limited

time-bound validity, after which certificates expire and need

renewal from the issuing trusted third party. This ensures

periodic governance and checks on the identity of the party

requesting the issuance of the certificate. It also reduces the

chances of misuse of the certificate, retaining its utility. This

is why it is important for organizations implementing TLS

mechanisms to monitor certificate expiry dates systemically

via some certificate management software to ensure timely

renewal of certificates and avoid any disruption or risk caused

by lapse.

Fig. 5 TLS Certificate list of contents

3.4. Regularly upgrading TLS protocol versions.

As technology advances daily, so do the exploitation

techniques, which means any current TLS version becomes

outdated and is superseded by the latest version that offers

stronger protection relevant to current times. With time, some

vulnerabilities get discovered and exposed with an existing

version, and newer versions often are seen as a guarantee to

address newly emerged vulnerabilities and weaknesses from

the older versions. Upgrading the version and keeping it up to

date ensures protection from known vulnerabilities. Just

upgrading to the latest protocol version is not enough by itself;

it's also important that older versions are disabled or

deprecated to ensure that there is no fallback option to

communicate using an inferior protocol that is still active,

putting all the upgrade effort to waste and jeopardizing the

security of the digital asset and the information.

4. Examining mTLS – Mutual TLS
4.1. Mutual authentication

While TLS enables only the client to validate the server it

is connected to, mTLS takes the capability to another notch by

allowing the server to validate the calling party or client.

mTLS enforces a true zero-trust connection to ensure further

security and authenticity for safe data exchange. So, in the

case of an mTLS-based connection, both the client and the

server hold a public certificate that trusted third-party issues,

and both sides can authenticate using their respective private

keys. Figure 6 shows a high-level handshake flow between

client and server using mTLS.

As visible, both client and server share respective

certificates and only after verification on both sides is the

connection established, which is trusted and secure in both

directions. mTLS provides a robust mechanism to defend

against some common attacks that target APIs. The two most

prominent and common attacks carried out against APIs are

Man in The Middle and stuffing stolen credentials attacks.

These attacks often circumvent the secure channel established

by TLS by impersonation and spoofing. These days, these

attacks can be easily launched using simple UI-based tools

with minimal effort.

Fig. 6 TLS Certificate list of contents

Piyush Dixit / IJCTT, 72(10), 1-7, 2024

6

Fig. 7 TLS Certificate list of contents

Figure 7 shows when a malicious actor tries to execute a

man-in-the-middle attack that does not get successful because

both client and server have the ability to verify the identity of

each other using an MTLS-based connection and respective

certificates from each side of the connection. The malicious

actor does not possess a trusted certificate that is verifiable on

either side and, hence, is unable to establish any kind of

connection. The bad actor, while executing a man-in-the-

middle attack, tries to spoof itself as an authentic server to the

client, and on the other hand, it tries to spoof itself as a genuine

client to the server, in case of a TLS-based handshake, there is

still a chance that the bad actor would be able to convince at

least the client of being a legitimate web server, but in case of

mTLS even if the client's machine is tricked the server on the

other hand will not initiate a connection due to lack of validity

of the client. To protect web interactions that typically involve

a client requesting resources from a server, TLS is a robust

mechanism. However, when protecting API-based

interactions between a client and server, mTLS proves to be a

much more relevant mechanism. Organizations exposing APIs

often either share business data or expose key business logic

using those APIs over the Internet, which means in the case of

an API based communication, there is often a risk of an

untrusted client misusing either the data or business

functionality exposed by the API to cause harm to an

organization, this is exactly why it is a much safer approach to

verify the API consuming client in addition to authenticating

them, and that can be made possible by utilizing mTLS. It

requires managing certificates on both sides and implementing

logic to validate. This may seem more complex, but it is a

strong mechanism to implement two-way or zero trust-based

communication between client and server.

5. Conclusion
The advanced API protection mechanism examined and

described in this study goes way above basic security

safeguards when protecting APIs against advanced cyber-

attacks. Table 1 below summarises all the mechanisms

discussed in the study and can be used by organizations

willing to bolster API security as a quick-start security

checklist.

Table 1. Advanced security mechanisms checklist

Steps Description

1 Start with implementing basic WAF as a must.

2 Upgrade eventually to WAAP.

3 Use TLS-based encryption above APIs.

4 Use very strong Cipher suites for TLS.

5 Keep upgrading TLS versions with time.

6 For highly sensitive data APIs, use mTLS.

These checklist steps will significantly help protect APIs

and business data. However, API security is a never-ending

and always-changing process. While these advanced

mechanisms provide a solid foundation and starting point, it is

extremely important to enforce strong governance and audit

mechanisms to adjust and adapt to the changing security

landscape and keep pace with advancing cyber threats daily.

References
[1] Kinza Yasar, Web Application Firewall (WAF), 2023. [Online]. Available: https://www.techtarget.com/searchsecurity/definition/Web-

application-firewall-WAF

[2] Ronghua Sun, Qianxun Wang, and Liang Guo, “Research Towards Key Issues of API Security,”

 CNCERT 2021, Communications in Computer and Information Science, pp. 179-192, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[3] Josué Alejandro Díaz-Rojas et al., “Web API Security Vulnerabilities and Mitigation Mechanisms: A Systematic Mapping Study,” 2021

9th International Conference in Software Engineering Research and Innovation (CONISOFT), San Diego, CA, USA, pp. 207-218, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[4] Fatima Hussain et al., “Enterprise API Security and GDPR Compliance: Design and Implementation Perspective,” IT Professional, vol.

22, no. 5, pp. 81-89, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[5] What Is WAAP, Akamai. [Online]. Available: https://www.akamai.com/glossary/what-is-waap

[6] Web Application and API Protection (WAAP), Imperva A Thales Company. [Online]. Available:

https://www.imperva.com/learn/application-security/web-application-and-api-protection-waap/

[7] What Happens in a TLS Handshake SSL Handshake, Cloudflare. [Online]. Available: https://www.cloudflare.com/learning/ssl/what-

happens-in-a-tls-handshake/

[8] PCI DSS Quick Reference Guide, PCI Security Standards Council, 2018. [Online]. Available:

https://listings.pcisecuritystandards.org/documents/PCI_DSS-QRG-v3_2_1.pdf

https://doi.org/10.1007/978-981-16-9229-1_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+Towards+Key+Issues+of+API+Security&btnG=
https://link.springer.com/chapter/10.1007/978-981-16-9229-1_11
https://doi.org/10.1109/CONISOFT52520.2021.00036
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Web+API+Security+Vulnerabilities+and+Mitigation+Mechanisms%3A+A+Systematic+Mapping+Study&btnG=
https://ieeexplore.ieee.org/abstract/document/9653437
https://doi.org/10.1109/MITP.2020.2973852
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enterprise+API+Security+and+GDPR+Compliance%3A+Design+and+Implementation+Perspective&btnG=
https://ieeexplore.ieee.org/abstract/document/9194432

Piyush Dixit / IJCTT, 72(10), 1-7, 2024

7

[9] Summary of the HIPAA Privacy Rule, US Department of Health and Human Services, 2022. [Online]. Available:

https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html

[10] What does the General Data Protection Regulation (GDPR) Govern, Reform of EU Data Protection Rules, European Commission, 2016.

[Online]. Available: https://commission.europa.eu/law/law-topic/data-protection/reform/what-does-general-data-protection-regulation-

gdpr-govern_en

[11] Dionisie Gitlan, Cipher Suites Explained in Simple Terms: Unlocking the Code, SSL Dragon, 2024. [Online]. Available:

https://www.ssldragon.com/blog/cipher-suites/

[12] What is an SSL/TLS Certificate, AWS. [Online]. Available: https://aws.amazon.com/what-is/ssl-certificate/

[13] Why use TLS 1.3? Cloudflare. [Online]. Available: https://www.cloudflare.com/learning/ssl/why-use-tls-1.3/

[14] Josh Lake, TLS (SSL) Handshakes Explained, Comparitech, 2023. [Online]. Available: https://www.comparitech.com/blog/information-

security/tls-ssl-handshakes-explained/

[15] Arthur Bellore, The TLS Handshake Explained, Autho by Okta, 2023. [Online]. Available: https://auth0.com/blog/the-tls-handshake-

explained/

[16] What is Mutual TLS mTLS, Cloudflare. [Online]. Available: https://www.cloudflare.com/learning/access-management/what-is-mutual-

tls/

[17] Neil Madden, API Security in Action, Manning Shelter Island, 2020. [Online]. Available:

https://cdn.ttgtmedia.com/rms/pdf/bookshelf_apisecurityinaction_excerpt.pdf

[18] OWASP Top 10 API Security Risks, OWASP, 2023. [Online]. Available: https://owasp.org/API-Security/editions/2023/en/0x11-t10/

[19] API7:2023 Server Side Request Forgery, OWASP, 2023. [Online]. Available: https://owasp.org/API-Security/editions/2023/en/0xa7-

server-side-request-forgery/

[20] API8:2023 Security Misconfiguration, OWASP, 2023. [Online]. Available: https://owasp.org/API-Security/editions/2023/en/0xa8-

security-misconfiguration

[21] API9:2023 Improper Inventory Management, OWASP, 2023. [Online]. Available: https://owasp.org/API-Security/editions/2023/en/0xa9-

improper-inventory-management/

[22] API10:2023 Unsafe Consumption of APIs, OWASP, 2023. [Online]. Available: https://owasp.org/API-Security/editions/2023/en/0xaa-

unsafe-consumption-of-apis

